王艳青

作者:来源:151amjs澳金沙门时间:2024-01-08浏览:10设置


基本信息:

王艳青, 男,博士、教授。联系方式:wangyanqing@zzuli.edu.cn

硕士生导师,中国数学会会员,CSIAM会员,美国《Mathematical Reviews》评论员。主要从事流体力学Navier-Stokes方程及相关方程(适当)弱解正则性和守恒量的数学研究,相关结果发表在Siam JMANonlinearityPhys. D JDEJFAACCMPJMJMFM等期刊上。主持完成国家自然科学基金青年项目1项,目前主持在研国家自然科学基金面上项目1项和河南省优秀青年科学基金项目1项。参与省级一流课程《高等数学》建设,参与校级在线课程《复变函数与积分变换》建设。

教育背景:

2012.09--2015.06  博士  首都师范大学     应用数学

2009.09--2012.07  硕士  首都师范大学     应用数学

2005.09--2009.06  学士  河南大学       数学与应用数学

工作履历

2022.01-至今     郑州轻工业大学       教授

2015.06-2021.12   郑州轻工业大学          讲师

教授课程:

本科生课程:《高等数学》《复变函数与积分变换

研究生课程:《偏微分方程》《椭圆与抛物方程

荣誉和奖励:

1、第四届全国高校数学微课程教学设计竞赛,华中赛区二等奖、河南赛区一等奖1项;1/12018.

2、河南省教育厅优秀科技论文奖一等奖,1/12022.

主持或参加项目:

1.国家自然科学基金青年项目,11601492,不可压缩磁流体方程弱解的研究,2017.12019.1218万元,结项,主持.

2.国家自然科学基金面上项目,11971446,不可压缩Navier-Stokes 方程适当弱解的研究,2020.12023.1250万元,在研,主持.

3. 国家自然科学基金面上项目,12071113,不可压缩Navier-Stokes方程解的正则性, 2021.12024.1251万元,在研,第二.

4. 河南省自然科学优秀青年项目,232300421077Navier-Stokes 方程和 Euler 方程解的正则性与能量守恒,项目批准号:2023.12025.1225万元,主持.

代表性论文(*为通讯作者)

[1] Wang, Yanqing; Wu, Gang*. Fractal dimension of potential singular points set in the Navier–Stokes equations under supercritical regularity. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, (2023)

[2] Wang, Yanqing*; Otto, Chkhetiani. Four-thirds law of energy and magnetic helicity in electron and Hall magnetohydrodynamic fluids. Phys. D 454 (2023), Paper No. 133835.

[3] Wei, Wei; Wang, Yanqing*; Ye, Yulin. Gagliardo-Nirenberg inequalities in Lorentz type spaces. J. Fourier Anal. Appl. 29 (2023), no. 3, Paper No. 35, 30 pp.

[4] Liu, Jitao; Wang, Yanqing*; Ye, Yulin. Energy conservation of weak solutions for the incompressible Euler equations via vorticity. J. Differential Equations 372 (2023), 254–279.

[5] Wang, Yanqing; Ye, Yulin; Yu, Huan*.Energy Conservation for the Generalized Surface Quasi-geostrophic Equation. J. Math. Fluid Mech. 25 (2023), no. 3, 70. 35.

[6] Wang, Yanqing; Ye, Yulin*; Yu, Huan. The role of density in the energy conservation for the isentropic compressible Euler equations. J. Math. Phys. 64 (2023), no. 6, Paper No. 061504, 16 pp.

[7] Ye, Yulin; Guo, Peixian;Wang, Yanqing*. Energy conservation of the compressible Euler equations and the Navier-Stokes equations via the gradient. Nonlinear Anal. 230 (2023), Paper No. 113219, 18 pp.

[8] Wang, Yanqing; Jiu, Quansen; Wei, Wei*. Leray's backward self-similar solutions to the 3D Navier-Stokes equations in Morrey spaces. SIAM J. Math. Anal. 54 (2022), no. 3, 2768–2791.

[9] Ye, Yuli; Wang, Yanqing*, WeiWei. Energy equality in the isentropic compressible Navier-Stokes equations allowing vacuum. J. Differential Equations.  338 (2022), 551–571.

[10] Wang, Yanqing*; Mei, Xue; Huang, Yike .Energy equality of the 3D Navier-Stokes equations and generalized Newtonian equations. J. Math. Fluid Mech. 24 (2022), no. 3, Paper No. 65, 10 pp.

[11] Wang, Yanqing; Wei, Wei*; Wu, Gang; Ye, Yulin. On continuation criteria for the full compressible Navier-Stokes equations in Lorentz spaces. Acta Math. Sci. Ser. B (Engl. Ed.) 42 (2022), no. 2, 671–689.

[12] Wang, Yanqing; Wei, Wei*; Yu, Huan. ε-regularity criteria for the 3D Navier-Stokes equations in Lorentz spaces. J. Evol. Equ. 21 (2021), no. 2, 1627–1650.

[13] Ji, Xiang; Wang, Yanqing*; Wei, Wei. New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. J. Math. Fluid Mech. 22 (2020), no. 1, Paper No. 13, 8 pp.

[14] Wang, Yanqing; Wu, Gang; Zhou, Daoguo*. A regularity criterion at one scale without pressure for suitable weak solutions to the Navier-Stokes equations. J. Differential Equations 267 (2019), no. 8, 4673–4704.

[15] He, Cheng; Wang, Yanqing*; Zhou, Daoguo. New ε-Regularity Criteria of Suitable Weak Solutions of the 3D Navier–Stokes Equations at One Scale. J. Nonlinear Sci. 29 (2019), no. 6, 2681–2698.

[16] Wang, Yanqing*; Wu, Gang.On the box-counting dimension of the potential singular set for suitable weak solutions to the 3D Navier-Stokes equations. Nonlinearity 30 (2017), no. 5, 1762–1772.

[17] Ren, Wei; Wang, Yanqing*; Wu, Gang. Partial regularity of suitable weak solutions to the multi-dimensional generalized magnetohydrodynamics equations. Commun. Contemp. Math. 18 (2016), no. 6, 1650018, 38 pp.

[18] Jiu, Quansen; Wang, Yanqing*; Wu, Gang. Partial regularity of the suitable weak solutions to the multi-dimensional incompressible Boussinesq equations.J. Dynam. Differential Equations 28 (2016), no. 2, 567–591.

[19] Wang, Yanqing*; Wu, Gang. A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier–Stokes equations. J. DifferentialEquations 256 (2014)1224–1249.

[20] Jiu, Quansen; Wang, Yanqing*. On possible time singular points and eventual regularity ofweak solutions to the fractional Navier-Stokes equations. Dynamics of PDE, 11(2014), No.4, 321–343.

      


返回原图
/

Baidu
sogou